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Daniel E. Martire and Richard E. Boehm
Department of Chemistry
Georgetown University
Washington, D.C. 20057

ABSTRACT

A statistical-mechanical theory, based on a lattice
model, has been developed to address the molecular mechanism
of retention and selectivity in both normal-phase and reversed-
phase liquid adsorption chromatography. The model is a natural
"competitive-equilibrium' one, where possible contributions
from solvent-solvent and solute-solvent interactions, and,
hence, from solution nonideality, are not neglected. Homo-
geneous and heterogeneous adsorbent surfaces, single-solvent
and binary mixed-solvent mobile phases, and solute molecules
of different size and shape are treated. Practical applications
of the theory are presented to demonstrate its utility and sig-
nificance.

For homogeneous adsorbents and neat solvents, the molecular
energetics of retention and selectivity are examined, with
special emphasis on the effects of solute size and shape, and,
relatedly, the modes of solute adsorption. Separations of geo-
metrical isomers and homologous series in real and simulated
chromatographic processes are investigated, confirming predic-
tions of the theory and the important role of solvent-solvent
and solute-solvent interactions in reversed-phase systems. The
implications of a more general retention equation for micro-
scopically heterogeneous adsorbents are discussed. The depen-~
dence of capacity ratio on mobile-phase composition for binary
solvents is analyzed in some detail. An often important contri-
bution arising from solution nonideality is predicted theoreti-
cally. This 1is shown to be consistent with experimental results
on normal-phase and reversed-phase systems.
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INTRODUCTION

The impetus for this study was the perceived need of a
general, rigoroué, yet tractable, molecular theory of liquid
adsorption chromatography (LAC), applicable to both normal-phase
(NP) and reversed-phase (RP) modes, and poteﬁtially extendible
to such highly modified adsorbents as chemically bonded phases.
Phenomenological and semi-theoretic models have been proposed
for LAC, particularly in the NP mode with the polar adsorbents
silica gel and alumina (1-14), From them have come useful cor=-
relative equations and practical guides such as "solvent
strength” or eluotropic seriegs. However, there remain unsettled
questions such as realistic modelling of adsorbent heterogeneity,
the effects of solute (sample) molecular shape and size, and the

explicit functional dependence of retention on mobile-phase

(eluent) composition for mixed-solvent systems. Therefore, a

statistical-mechanical model has been developed from first prin-
ciples (15), to provide: a) a more rigorous theoretical founda-
tion for LAC (column and thin-layer chromatography), b) an in-
terpretive framework capable of bringing more coherence to the
vast amount of reported data, c¢) further insight into the molecu-
lar mechanism of solute retention and selectivity, and the re-
spective roles of the mobile and stationary phases in NP and RP
separations, and d) theoretical resolution of the unsettled
issues.

Here, we summarize the salient features of ocur model and the
derived equations. Practical applications and interesting impli-
cations of the theory are then presented for NP and RP processes,
Effectively planar homogeneous and heterogeneous adsorbent sur-
faces, single-solvent and binary mixed-solvent mobile phases, and

solute molecules of different size and shape are considered.

THEORY
The focus of the theoretical treatment is on equilibrium

properties, viz., infinite-dilution (16) distribution constants
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and capacity ratios for nonelectrolytic solutes with nonelectro-
lytic solvents under isochratic elution conditions. Of ultimate
interest is the distribution of solute between a bulk-solvent
mobile phase and a stationary phase formed by the adsorption of
a monolayer (17) of solvent on a planar surface. The statistical-
mechanical analysis is based on a lattice model and utilizes the
Bragg-Williams method to construct the canonical partition func-
tions for the solute and the solvent(s) in both the mobile and
stationary phases (15). The two phases are linked by the usual
equilibrium condition, i.e., equality of the chemical potential
of the solute in the two phases and, for a binary solvent mix~
ture, equality of the chemical potential for each solvent compo-
nent in the two phases. Entropy effects are automatically in-
cluded, and cancellation of solute-solvent and solvent-solvent
interactions between the two phases is not assumed. Thus, the
model is a natural "competitive-equilibrium' model where possible
contributions from solution nonideality are not ignored.

In the most general form of the model, we consider a hetero-
geneous planar surface containing w types of energetically and/or
chemically different adsorption sites, each of arbitrary umit
area (Aj = 1, for all j). The "monomeric" solvent molecules
(components 1 and 2 for binary mixed solvents) are taken to be
cubic in shape, with the area of any given face equal to the area
of an adsorption site, i.e., A1 = A2 =- Aj = 1 (17). The shape of
the solute molecule (component 3) is approximated by either a
regular or irregular rectangular prism bossessing six faces (a
to f) capable of making full and direct contact with the adsor-
bent surface. (For example, the solute may be cubic, rodlike,
platelike, L-shaped, U-shaped, etc; see later.) The area of the
i-th face, relative to that of an adsorption site, is designated
by A3i' ‘
Considering a single solvent (component 1 only) and letting

A and x, be the equilibrium mole fractions of solute in the

3
stationary and mobile phases, respectively, we obtain the
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following expression for the infinite-dilution mole-fraction

distribution constant K3(1) (15);
3 ,f @ A
K - - (] [g,exp{-Baw, .}1734), 1)
3D x4 6 E'a Jmar 4 i, i

where gj is the fraction of adsorption sites that are of type j
and B = (kBT)-l, where kB is the Boltzmann constant and T is the

temperature in Kelvin. Also:

Buy 4 = 93,97 1 T LT (2)

where the w's are negative quantities and refer to attractive-
interaction free energies (18) per unit area. (For example,
w344 represents the interaction between a surface adsorption
site of type j and a unit area of the i-th face of a solute
molecule.) The term Aw, _,, which may be negative or positive,

3.t
is then the interchange free energy per unit area for the process:

1-j(stat.) + 1—3i(mob.) = 3i-j(stat.) + 1-1(mob.), 3

which corresponds to the transfer of solute from the mobile to
the stationary phase and the concomitant reversed transfer of

solvent. This involves the breaking of 1-3, and 1-j interactions

and the formation of 1-1 and Bi-j interactiins.

For "monomeric" solute molecules (i.e., A3i = 1, for all 1)
and a homogeneous surface (one type of adsorption site only), we
obtain the following expression for the distribution constant

K3(1+2) with a binary mixed-solvent system (15,19):
X X

1 1 2
= exp [CB(8, ,+8, ,~8,,)] + =——— exp[DB(S,,+6,,=6
K3(l+2) K3(l) 12 713 723 K3(2) 12 723

s
4)

where K3(1) and K3(2) are the distribution constants with neat
solvents 1 and 2, respectively, x1 and Xy
mole fractions of 1 and 2 in the mixed-solvent system, and C and

are the mobile-phase

D are given by:
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C= 6x2 - 5y2 = 1+ 5yl - 6xl )

'1+5y2-6x2

» (5)
D= 6x1 - 5yl
where Y1 and y, are the stationary-phase mole fractions of 1 and
2 in the mixed-solvent system. The §'s refer to interchange free
energies:

m Gnm =W (wmm + wnn)/Z . (6)
They reflect contributions from solution nonideality and, hence,
can be phrased in terms of activity coefficients (see later.)

The mobile and stationary-phase solvent compositions are

related through (15):

(Yz)(l-xz)
?I:;;YT;EY exp[(12x2—10y2)'8612} =
K
3()
K3(2) exp[B(G 23 613)] . (7

Combining equations (4) and (7), the following useful relations

are derived:

K3(l+2) 3(l)(yl/xl) exp{(6x -Syl -1)- 3(512 13 ) 3)] N (3)
K342y ™ K32y (92/%)) expl(6xy=5y,=1)"8(S),+8)4=6; )] . (9

Although the above equations may appear to be formidable at
first glance, their application to actual and simulated chromato-
graphic cases will permit their simplification and demonstrate
their utility and significance.

In comparing the retention of solutes with a given solvent
and on a given column or TLC plate, it is apparent that relative
K values will be equivalent to relative capacity-ratio (k')
values. Similarly, since the present theoretical analysis deals
only with solvent molecules of the same size, relative K values
may be regarded as relative k' values when assessing the effect

of varying the nature or composition of the eluent.
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HOMOGENEQUS ADSORBENT AND NEAT SOLVENT

In this section we consider a homogeneous surface (type s

adsorption sites only) and a single-component sclvent. The rele-

vant form of equation (1) is:

f
A
Ky = (1/6)§.a[exp(-BAvs'i)] 3, (10)

where Aws,i - W3is - wls + wll - w131 .

Monomeric Solutes

With a chemically homogeneous monomeric solute, A31 = ] for
all 1 and the six faces are energetically equivalent. Hence:
K3(1) = exp(-BAws), whereAws = Wag T W RV T W g
Clearly, strong solute-adsorbent and solvent-solvent interactions
promote negative Aws values and act to prolong retention, while
strong solvent-adsorbent and solvent-solute interactions promote
positive Aws values and favor more rapid elution. Absolute re-
tention is thus governed by the balance or “competition" among
these four interaction terms. For two such solutes (u and v),

the relative retention or separation factor Fuv is:

Fo® Kv(l)/Ku(l) = k'v(l)/k'u(l) = exp{-BA(Aws)},
where A(Aws) = (wVs - wus) - (wlv - wlu).

Therefore, the separation 1is determined by the relative strengths
of solute-adsorbent and solute-solvent interactions.

From equation (10), for a chemically heterogeneous monomeric
solute where one of the six faces (denoted by a star) is ener-
getically different than the other five, the absolute retention

is a sum of two contributions:

Ry = (L/6)exp(-80w.") + (5/6)exp(~Bbw_),

(*) (*) (*)
3 = w3s - W + w - wl3 .

where Aw 1s 11
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However, if the unique face (representing, perhaps, a polar func-
tional group) experiences especially strong interactions with the
surface or especially weak intereactions with the solvent, so that
-BAws*>>—BAws, then its retention contribution would dominate
despite the smaller pre-exponential or "degeneracy" factor. The
separation factor of two such solutes (u and v) differing only
in the chemical nature of the unique face is:

k'v(l) exp(-BAw_* )+ Sexp(-BAws)

- - s(v)
uv k'u(l) exp(-BAwszu))+ Sexp(-BAws)

- - *
For convenience, consider the case BAws?v)> BAws(u)’ so that

'Fuv>l. The maximization of Fuv is achieved when Aws is as posi-

tive as possible. This would minimize the retention contribution
associated with the five common faces (representing, perhaps,
nonpolar groups) and would reduce their interference with the

separation. Under these conditions,

* * *
Fuv z exp{-BA(Aws )}, where A(Aws ) = Aws(v)-Aws?u)'

As is weli known, such "chemical-type'" separations can be accom-
plished in a NP system with a polar adsorbent and a solvent of
moderate polarity. That is, the solvent should be polar enough

to produce a positive Aws and to elute the solutes in a resonable
period of time, but not so polar as to inhibit access of the polar

functional group of the solute to the adsorbent surface.

Nonmonomeric Solutes

The above analysis was based solely on energetic considera-
tions. Let us now examine the additional effects of solute geo-
metry, i.e., size and shape, on retention and selectivity.

For two chemically homogeneous solutes,*a 1 x 1 x p rod and

al xmx n plate, equation (10) yields:

xg?i) = (1/3)exp(-Bbw,) + (2/3)exp(-8v,p)

Kg%;ge = (1/3)exp(-8Aw_m) + (1/3)exp(-BAw_n) + (1/3)exp(-BAw_mn).
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Note that each contribution to K3(1) consists of the product of
the fraction of ways a particular solute adsorption mode can be
achieved and the Boltzmann factor involving the interchange free

3
vertical-adsorption contribution and the second, the

energy for that mode. In Kt?i), the first term represents the

horizontal-adsorption contribution. As with monomeric solutes,
absolute retention increases as Aws becomes more negative and de-
creases as Aws becomes more positive.

The foregoing expressions may be used to illustrate selec-
tivity on the basis of solute shape. Consider, for example, the
gseparation of two geometrical isomers of comparable molecular
volume, a 1 x 1 x 6 rod and a 1 x 2 x 3 plate. Letting
F = K§?i)/K§]('i§? it 1s clear that when &w_ = 0, K‘;‘("i) - K5e
and F = 1. In this case, each of the six solute faces has the
same probability of adsorbing on the surface. The effective ad-
sorption cross-sectional area <A3>, relative to that of the sol-
vent, 1s then 13/3 for the rodlike solute and 11/3 for the plate-
like one. When Aws % 0, F>1 and separation becomes possible.
For BAws = +0.5 (solute prefers the mobile phase), F = 1.10 and
the tendency for both solutes is to adsorb on the surface through
their smallest-area faces. With increasing BAwS, <A3>+1 for the
rods and <A3>*2 for the plates. For BAwS = -0.5 (solute prefers
the stationary phase), F = 1.53 and adsorption via the largest-
area faces is favored. This tendency becomes more pronounced as
BAws becomes more negative, leading to an optimum F value of 2.00,
with <A3>*6 for both solutes. It would appear, therefore, that
this separation could be achieved using a nonpolar adsorbent
(20-22) and a solvent of greater polarity than the solutes, as
in a RP system. Since the main interaction between the solute

or solvent and the adsorbent would then involve dispersion forces,

the desired negative BAws would stem primarily from stronger
solvent-solvent interactions relative to unit-area solute-solvent

interactions.
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It is possible to treat other solute shapes within the frame-
work of the model. Consider, for example, U-shaped and Z-shaped
hexamers of unit thickness, representing, perhaps, cis and trans

isomers, respectively:
Kg(l) - (1/3)exp(~BAws) + (l/3)exp(-28Aws) + (1/3)exP(-68AVS)
Kg(l) - (1/2)exp(-ZBAws) + (1/6)exp(-4BAws) + (1/3)exp(-63Aws)

VA U
F=K3qy/X3)

It can be shown that, provided BAws is sufficiently positive, a
respectable separation is attainable (e.g., F = 1.53 when
BAwS = +0.5). This indicates that the solvent/adsorbent system
should be selected to produce somewhat stronger l-s interactions
relative to unit-area 3-s interactions and/or somewhat stronger
unit~-area 1-3 interactions relative to 1-1 interactions. As dis-
cussed earlier, this is feasible with a'well—chosen NP system.
Turning now to & direct application of the theory, let us
examine homologous series separations. It is well known that NP
systems with polar adsorbents are not effective in separating,
for example, a homologous series of n-alkyl alcohols, whereas RP
systems with carbon adsorbents are (20,21). The theory affords
an interpretation of this and affirms the important role of
strong solvent-solvent interactions in the RP separations.
Regarding the solute molecules in question as chemically
heterogeneous rods of length p and unit-area base, each consisting
of an energetically unique face (denoted by a star) of unit area
and five energetically equivalent faces (one of unit area and the
remaining four of area p), we have from equation (10):

K3(1) = (1/6)exp(-8Aw§) + (1/6)exp(-8Aws) + (2/3)exP('BAWsP),

where Aw: and Aws are the unit-area interchange free energies re-
lating to the unique face (the polar functional group) and the

other five faces (the alkyl portion of the molecule), respective-
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ly. Of interest is the variation of fn K3(1) with solute chain
length p (roughly, solute carbon number):

' -
. - dana(l) . dlnk3(l) . QBAwS
P dp dp A+exp(-BAw;+8Awsp)+exp(-BAws+8Awsp)

(11)

where the magnitude of Sp is thus a measure of the goodness of a
homologous series separation. In general, Sp varies with solute
carbon number and its direction is determined by the sign of BAws.

If BAws is positive, Sp will be negative and will rapidly
approach zero with increasing p. To simulate a typical NP system
with a silica-gel adsorbent and a solvent which, as before, is of
modest polarity, consider the combination SAws* = -0,50 and
BAws = +0.50. From equation (ll), one calculates that Sp = -0.21
at p = 1, diminishing to Sp = -0,03 at p = 6, Such a system
would not be effective for separating homologs in the vicinity of
57C6. Indeed, in this p range the BAWS* contribution controls

both the k3(1) and Sp values, and the predominant mode of solute

‘adsorption is vertical adsorption through the unique face.

On the other hand, in an RP system with a carbonaceous ad-
sorbent and a polar solvent, one would expect BAws to be negative
because of strong solvent-solvent interactions, as discussed
earlier. Further, since -w;3>-w13, the inequality —BAws>-BAw:
would hold. For illustrative purposes, consider the combination
BAw: = -0.40 and BAws = -0.60. One calculates that Sp = 0.43 at
p = 1, increasing to Sp = 0.59 to p = 6, and reaching Sp = —SAwS =
0.60 at higher Sp’ Hence, excellent homologous-series separation
is predicted over the entire p range, and Sp in the vicinity of

n-C. is essentially equal to the limiting Sp value. (This would

6
obtain for any realistic value of BAV;.) Here, the BAwg contri-
bution controls both ké(l) and Sp, and the horizontal mode of

solute adsorption dominates. The theory thus predicts that, for
sufficiently large p, Sp should be independent of the chemical
nature of the polar functional group and should be approximately

equal to -BAws.
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To test the theory, the results of Guiochon et al (20,23)
are analyzed. Shown in Figure 2 of ref. 20 are linear plots of
1°810k5(1) vs. solute carbon number for Bralkyl benzenes, bro-
mides, chlorides and alcohols. In this RP system, the adsorbent
used was a modified carbon black and the solvent was acetonitrile
(ACN). Analysis of the data gives Sp = 0,56, independent of
solute functionality, as predicted. Also, the alcohols have the
smallest k' values. This follows from the theory in that the al-
cohols are expected to have the most negative WI3, the highest
Aw: and, hence, the shortest retention. Guiochon's group also
determined k'?;s using pyrocarbon coated on silica as the adsorbent
(21-23). The solute series studied were n-alkanes and n-alkyl
benzenes and methyl esters; the solvents were ACN and a 50/50
(v/v) mixture of ACN and HZO (23). For sufficiently large carbon
number, the plots are again virtually linear, yielding Sp values
of +0.49 and +0.71 with the former and latter solvent, respec-
tively, independent of solute functiomality. Moreover, in the
light of the theory, both the larger Sp ané higher k' values found
with the latter solvent must be due to stronger solvent-solvent
interactions (more negative Vg hence, more negative Aws).
Clearly, unlike many NP processes, the mechanism of retention
and selectivity cannot be reasonably addressed in RP-LAC without

accounting for solvent-solvent interactioms.

HETEROGENEOUS ADSORBENT AND NEAT SOLVENT

For a chemically and/or energetically heterogeneous ad-

sorbent and a single-component solvent, it is usually assumed
(1,10,14) that:

K3 " Egj"s(_l) 4 (12)

where gj is the fraction of type-j adsorption sites and K3(l),j
is the distribution constant with a homogeneous adsorbent of type
j. (A similar expression may be written for ké(l)') We note from
equation (1) that equation (12) is strictly valid only for mono~

meric solutes (A3i = 1 for all 1i).
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Consider, for example, a chemically homogeneous rodlike
solute and a heterogeneous adsorbent consisting of two types of

s?tes (s and t). From equation (1):
K3(1) = %[gsexp(-BAws) + (1-gs)exp(-BAwt)]
+ %[gsexp(-BAws) + (l-gs)exp(-Bch)lp, (13)

where Aws = Wi = Wig + Wi, V14

Equation (13) reveals that the equilibrium distribution constant

. and‘Awt =Wy TV, + Wyt W

13
consists of a sum of two contributions: the first term corresponds
to retention by vertical adsorption of solute on either an s or t

type site, while the second term corresponds to horizontal adsorp-

tion on p contiguous and randomly distributed s or t type sites.

Clearly, only 1f p = 1 can equation (13) be written in the form
of equation (12):

K3(l) = 83K3(1),s + (1'35)K3(1),: . (14)
However, in the special case where vertical adsorption dominates
(sufficiently positive Aw's and large p), equation (14) represents

a reasonable approximation (24).

HOMOGENEQUS ADSORBENT AND BINARY SOLVENT MIXTURE

The treatments and discussion in this section are based on
equations (4) to (9), which specifically deal with homogeneous
adsorbents and monomeric solutes and solvents. In many cases
the component molecules of the experimental systems to be exam-
ined differ in size and shape, therefore precluding fully quanti-
tative analysis of the data via the present model. Nevertheless,

the general validity of these equations will be demonstrated, as

will the importance of solution-nonideality effects.

In principle, the 8's in this model can be determined from
experimentally accessible solution-phase activity coefficients of
2 in 1l (YZ(l)) and of 3 at infinite dilution in a mixture of 1 +

o«

2 O3q149))¢



19:11 24 January 2011

Downl oaded At:

MOLECULAR THEORY OF LAC 765

2
12%1

-]

0 Yy (149)=68 8142, +683,52, 12%1%2°

where Y measures the deviation from Raoult's law, and z refers to

£n Yo ™ 688

- 688

the mole fraction. Again, however, the above equations are only
approximate when applied to mixtures consisting of molecules of
disparate size and shape (25).

In the subsequent analysis, the K's will be replaced by k'’s
in equations (4) to (9), as justified earlier. Also, 1 and 2 will
will refer to, respectively, thé less and more polar components of
the binary sclvent mixture. The monomeric solute will be formally
regarded as being chemically homogeneous. This is not as restric-
tive as might appear, because the relevant interchange free energy
may be viewedas an effective or averaged quantity, <Aws>. For in-
stance, setting A3i = 1 in equation (10), we obtain:

PR VL LU

I exp(-BAws’i)
i=a

where -we have averaged over the six faces of the solute molecule,

which, in general, may be chemically heterogeneous.

Reversed-Phase Systems

From equations (6) and (10), the relative retention of a
particular solute with neat solvents 1 and 2 is given by:

Y11 Y22
2

k3(2)/k5(1) - exp[B(WZS-wls+ - - + &8, -8

23 ~ 81900 (15)

If the homogeneous adsorbent is a nonpolar carbonaceous one, so
that Voo and W, g are determined primarily by dispersion forces,
then solvent-solvent and solvent-solute interactions will govern

the magnitude of the relative capacity ratios. Furthermore, if
component 2 is highly polar (e.g., H20), one would expect “Yy9
to be much greater than w1 and, except for solutes much more

polar than component 1, 623 to be greater than 513. Thus, k5(2)>>

1
k3(1) in the usual RP system.



19:11 24 January 2011

Downl oaded At:

766 MARTIRE AND BOEHM

With a binary mixed-solvent s&stem, the stationary-phase
composition (yz) can be determined for a given mobile-phase com-
position (x through equation (7). Using various realistic

§,, and 623, it can be

32y ®3¢1yr %120 %13
shown that, in a typical aqueous RP system, Yy should remain

sets of values for k

quite small until rather high X, values are reached. For example,
with k3(2)/k'3(1) - 50,8612 -&513 = 1/3 andBdB = 2/3, one calcu-
lates that ¥, * 0.005 at X, = 0.50, ¥, % 0.01 at X, = 0.90, and
¥, = 0.09 at X, = 0.99. (Note that the conditimn8§2>1/3 cor-
responds to phase separation, i.e., a region of solvent immisci-
bility). In other words, for x2<0.90, it 1s reasonable to assume
that Yy = 0 (ylzl). Clearly, solvent component 2 prefers to stay
in the mobile phase to take better advantage of strong 2-2 inter-
actions, thereby "driving" the less polar solvent component into
the stationary-phase layer.

Accordingly, setting vy 1 in équation (8), we have:

Zn ké(l+2) n ks(l) - In (l-xz) - bx (512 13 623)@. (16)
Neglecting the solution-nonideality contribution in equation (16),
one would predict that, independent of the nature of the solute:
Jdx -1

- ! L
Sx din k = (1 xz) , (17

3(1+2)

where Sx is the slope of a In k' vs. x, plot. Including this con-

2
tribution, we obtain:

-1
Sx = (l-xz) -6(612 + 613 - 523)

R. (18)
Experimental results for various solutes with a pyrocarbon-
on~-silica adsorbent and a methanol-water solvent mixture do not
conform to equation (17). (See Figure 9b of ref. 21.) Indeed,
the 2n k' vs. solvent composition plots for most of the solutes
are virtually linear, displaying positive Sx values much greater
than unity. Equation (18) can account for this behavior if
612 + 613 - 623 is sufficiently negative. Choosing a typical

solute, the results for nitrobenzene are analyzed in more detail.
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With 3(612 + 613 - 62; = -0.88, equation (16) furnishes an ex-
cellent fit, and the observed average slope (Sx % 6.5) and slight
curvature are faithfully reproduced. This value most likely re-
flects a very positive 623 value which, in turn, stems from the
relative weakness of 2-3 interactions compared to the strength

of 2~2 interactions. It is consistent with the low solubility and
high activity coefficient of nitrobenzene in water.

It is also possible to rationalize the relative ké(l)'s:
nitrobenzene>chlorobenzenezpyridine>toluene>phenol>benzene>aniline
According to our model, this order should follow the combined
ranking of the strength of 3~s and the weakness of 1-3 interac-
tions. Finally, the average Sx values go as follows: chloroben-
zene~toluene>benzene>anilineznitrobenzenezphenol>pyridine. This
descending order may follow 623, which becomes less positive
with increasing strength of 2-3 interactions, leading to smaller
Sx-values and increased curvature (equation (18)). This could
explain the observed behavior of pyridine, which is the solute
best accommodated by HZO (21).

Normal-Phase Systems

In typical NP-LAC systems with a polar adsorbent and a mixed
solvent containing a fairly polar moderator (component 2), it
generally holds that k§(1)>>k5(2). This 1is usually rationalized
in terms of the relative strengths of l-s and 2-s interactions.
While this may be largely so, equation (15) suggests that sol-
vent-solvent and solute-solvent interactions could also play a

role, This is borne out in the following analysis.
Employing realistic values of k!,,./k' §,., and

3(2) 3(Ly* “12
612 + 623 - 613, application of equation (7) reveals that the

usual situation in mixed-solvent NP processes is that y2>>x2 for

] - -
small x,. For example, letting k3(2)/k5(1) 0.01,8612 1/3 and

B(G12 +623—613) = 1/3, we find that at an x, of less than 0.03,

y2 = 0.99. (Note that the calculation is particularly sensitive
to the value of Bgl.) Accordingly, for sufficiently large x, (i.e.,
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a few mole percent), it is generally reasonable to let ¥y = 1l 1in
equation (9), yielding:

1] ]
a k3 142y = B K3
Neglecting the solution-nonideality contribution, one would pre-

- 2n x, = 6x1(612 + 623 - 613)8. (19)

dict that, independent of the nature of the solute:

tn x = 4 in k§(1+2)/d n x,

where S, is the slope of a &n k' vs. &n x, plot. Including this

S =- -1, (20)

contribution, we obtain:

in x 23

where we note that SZn x &y increase or decrease with increasing

= -1 + 6x2(512 + §

2n Xy» depending on the sign of the ¢ term. Equations (19) to
(21) are strictly valid for x

2>xé, where xé is the mobile-phase
composition at which Y, becomes sufficiently close to unity
(say, v, ® 0.99). In chis composition region the solute is es-
sentially "competing"” with the polar moderator for a surface ad-
sorption site,

Many NP systems conform at least approximately to equation
(20), indicating that solution-nonideality effects are often un-
important (2,8,26). 1In other cases, however, pronounced curva-
ture is observed in n k' vs, 2n x, plots (6,7,11,27,28), con-
sistent with equation (21).

Slaats et al (7) have carried out studies with silica as
the absorbent, n-heptane as the nonpolar golvent component, 2-

propanol and ethyl acetate as moderators, and l-phenylethanol

(PE), benzyl acetate (BA) and nitrobenzene (NB) as the solutes.
With 2-propanol, the plot for PE is found to be virtually linear
(Sln % = «0.9), while those for BA and NB display slopes which
(roughly) become less negative with increasing Xy This suggests
that the solution-~nonideality term in equation (21) is a small
positive quantity for PE and a larger positive quantity for the
other solutes. ([With Rs( 512 + 623 - 613)= +0.2, we obtain the
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observed SJzn x for PE.] This may be interpreted as follows. Be-
cause of the functional similarity between PE and 2-propanol, one
would expect 612 to be close to 613, and 523 to be close to zero.
For the less "polar" BA and NB, one would anticipate the inequal-
ities 512>613 and 623>0. This is in qualitative accord with the
published activity coefficient data (7,25). Similar arguments
may be presented in analyzing the results with the less polar
moderator ethyl acetate. Here, though, the plot for BA most
closely follows equation (20), as expected, while those for PE
and NB exhibit slopes which become more negative with increasing

Xy indicating that 612 + 623 - 613 is negative.

Comparison With Previous Models

Multiplying both sides of equation (8) by x
(9) by x., and adding, we find:

1 and equation

2
' - ' - -1)- -
In k3 (14g) = Yikacq)exPl(6x;=5y)-1)*B(S),+8)4-6)4)]
[ - - . § =
+ Y2k3(2)exD[(6x2 SYZ 1 3(512+623 613)1. (22)
Only if we then assume ideal-solution behavior (i.e., émn = 0),
do we obtain the expression commonly used to treat binary mixed-
solvent systems (1,8,9,13):
' - ' '
ke T Y1) T 2% (23)
In terms of mobile-phase composition, the ideal-solution counter-

part of equation (23) is a special case of equation (14):

/Ky 14py) = (51K (19 + (Ry/ K350, (24)

which is of the same general form as the expression proposed by
S . ! >> '

cott and Kucera (3,4,8). For xz/k3(2) xl/k 31
case in most NP systems for sufficiently large Xy equation (24)

y? as 1s the

may be approximated by:

! - ' -
n k3(1+2) in k3(2) n Xy » . 25)

a result derived previously by others (8). (Note that equation
(19) reduces to equation (25) when Gmn = 0,)
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It cah also be shown that the useful NP equations developed
by Snyder (1,2) represent a special case of our general theory.
If we assume ideal-solution behavior and consider a nonmonomeric
solute for which one mode of surface adsorption is dominant, the
modified form of equation (15) is:

. w w
32y K5qay) ™ Ay Bl = vy, + 5 - b,
where A, is the relative area of that face of the solute molecule

3
corresponding to the dominant mode. Keeping in mind that w is a

n (k +

negative quantity and assuming that the strength of solvent-ad-
sorbent interactions is proportional to that of solvent-solvent
interactions (proportiocnality constant of a), we obtain Snyder's

well-known expression:

in (ka(Z)/ké(l)) - G;A3(€1 - &5, (26)

' = g - - - - L
where a = a (1/2), € Bwll and €, szz. Also, al is

referred to as the adsorbent-activity parameter and € as the sol-
vent strength parameter.

With a binary ideal mixed-solvent system, equation (24) may
be rearranged to give:

tn (k!

kl
: - S
3(l)/k 3(1+2)) n (1 + xz(k, 7. 7

3(2)
According to Snyder, by analogy to equation (26):

n (k! ../

31 'A3(€ - al), (28)

' -
k342)) " %
where € is the effective solvent strength of the binary mixture.

t ] n . .
Substituting k3(1)/k3(2) from equation (26) into the r.h.s. of
equation (27), and comparing the result with the r.h.s. of equa-
tion (28), we obtain:

in [xz(exp{a;A3(€2 - el)}) +1 - x2]

T = e, + (29)
a'A
s 3

which is Snyder's familiar equation.
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It should be emphasized that equations (23) to (29) are all
based on the assumption of solution ideality. In the previous
parts of this section, evidence was presented that this assumption

is often not justifiable.

CONCLUDING REMARKS
In this study we have demonstrated the utility and signifi-

cance of a new molecular theory of LAC. The theoretical model
itself is consistent with the commonly held view that the station-
ary phase is formed by the adsorption of a monolayer of solvent on
the adsorbent surface. Recently, however, Scott and Kucera (29)
executed careful measurements, the results of which were inter-
preted as indicative of bilayer formation in certain cases (high
concentration of polar or hydrogen-bonding solvents on silica-gel
surfaces). It was also suggested that some solutes may interact
only with the primary layer, displacing solvent in the second
layer, but not interacting directly with the adsorbent surface
itself. Should this view prevail, the current model would have

to be adapted to allow for the possibility of multilayer adsorp-
tion (17). .

It must be pointed out, however, that deviation from the
Langmuir isotherm for monolayer adsorption does not necessarily
imply multilayer adsorption. The deviation might simply be due
to solution-nonideality effects (30). Indeed, a remarkable
variety of isotherm shapes can be generated from equation (7),
depending on the values of the molecular parameters (15). Only

for ideal solutions (Gmn = 0), does equation (7) produce the ex-

pected Langmuir form:
Yo = Np%,/ (1 + (ng, = 1)x,],
where Ny, = Ky(1)/K3(2y

Finally, we mention that, in an attempt to simulate chroma-
tographic behavior with chemically bonded phases, our model is
currently being extended to include highly modified adsorbents.
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